Monday, 24 October 2016

Computer Networks Topic----OSI Model

OSI (Open Systems Interconnection) is reference model for how applications can communicate over a network. A reference model is a conceptual framework for understanding relationships. The purpose of the OSI reference model is to guide vendors and developers so the digital communication products and software programs they create will interoperate, and to facilitate clear comparisons among communications tools. Most vendors involved in telecommunications make an attempt to describe their products and services in relation to the OSI model. And although useful for guiding discussion and evaluation, OSI is rarely actually implemented, as few network products or standard tools keep all related functions together in well-defined layers as related to the model. The TCP/IP protocols, which define the Internet, do not map cleanly to the OSI model.

OSI layers

The main concept of OSI is that the process of communication between two endpoints in a telecommunication network can be divided into seven distinct groups of related functions, or layers. Each communicating user or program is at a computer that can provide those seven layers of function. So in a given message between users, there will be a flow of data down through the layers in the source computer, across the network and then up through the layers in the receiving computer. The seven layers of function are provided by a combination of applications, operating systems, network card device drivers and networking hardware that enable a system to put a signal on a network cable or out over Wi-Fi or other wireless protocol).
The seven Open Systems Interconnection layers are:

Layer 1: The Physical Layer :

  1. It is the lowest layer of the OSI Model.
  2. It activates, maintains and deactivates the physical connection.
  3. It is responsible for transmission and reception of the unstructured raw data over network.
  4. Voltages and data rates needed for transmission is defined in the physical layer.
  5. It converts the digital/analog bits into electrical signal or optical signals.
  6. Data encoding is also done in this layer.

Layer 2: Data Link Layer :

  1. Data link layer synchronizes the information which is to be transmitted over the physical layer.
  2. The main function of this layer is to make sure data transfer is error free from one node to another, over the physical layer.
  3. Transmitting and receiving data frames sequentially is managed by this layer.
  4. This layer sends and expects acknowledgements for frames received and sent respectively. Resending of non-acknowledgement received frames is also handled by this layer.
  5. This layer establishes a logical layer between two nodes and also manages the Frame traffic control over the network. It signals the transmitting node to stop, when the frame buffers are full.

Layer 3: The Network Layer :

  1. It routes the signal through different channels from one node to other.
  2. It acts as a network controller. It manages the Subnet traffic.
  3. It decides by which route data should take.
  4. It divides the outgoing messages into packets and assembles the incoming packets into messages for higher levels.

Layer 4: Transport Layer :

  1. It decides if data transmission should be on parallel path or single path.
  2. Functions such as Multiplexing, Segmenting or Splitting on the data are done by this layer
  3. It receives messages from the Session layer above it, convert the message into smaller units and passes it on to the Network layer.
  4. Transport layer can be very complex, depending upon the network requirements.
Transport layer breaks the message (data) into small units so that they are handled more efficiently by the network layer.

Layer 5: The Session Layer :

  1. Session layer manages and synchronize the conversation between two different applications.
  2. Transfer of data from source to destination session layer streams of data are marked and are re-synchronized properly, so that the ends of the messages are not cut prematurely and data loss is avoided.

Layer 6: The Presentation Layer :

  1. Presentation layer takes care that the data is sent in such a way that the receiver will understand the information (data) and will be able to use the data.
  2. While receiving the data, presentation layer transforms the data to be ready for the application layer.
  3. Languages(syntax) can be different of the two communicating systems. Under this condition presentation layer plays a role of translator.
  4. It performs Data compression, Data encryption, Data conversion etc.

Layer 7: Application Layer :

  1. It is the topmost layer.
  2. Transferring of files disturbing the results to the user is also done in this layer. Mail services, directory services, network resource etc are services provided by application layer.
  3. This layer mainly holds application programs to act upon the received and to be sent data.

Merits of OSI reference model:

  1. OSI model distinguishes well between the services, interfaces and protocols.
  2. Protocols of OSI model are very well hidden.
  3. Protocols can be replaced by new protocols as technology changes.
  4. Supports connection oriented services as well as connectionless service.

Demerits of OSI reference model:

  1. Model was devised before the invention of protocols.
  2. Fitting of protocols is tedious task.
  3. It is just used as a reference model.

No comments:

Post a Comment